Reduction of Selenite to Red Elemental Selenium by Rhodopseudomonas palustris Strain N
نویسندگان
چکیده
The trace metal selenium is in demand for health supplements to human and animal nutrition. We studied the reduction of selenite (SeO₃⁻²) to red elemental selenium by Rhodopseudomonas palustris strain N. This strain was cultured in a medium containing SeO₃⁻² and the particles obtained from cultures were analyzed using transmission electron microscopy (TEM), energy dispersive microanalysis (EDX) and X ray diffraction analysis (XRD). Our results showed the strain N could reduce SeO₃⁻² to red elemental selenium. The diameters of particles were 80-200 nm. The bacteria exhibited significant tolerance to SeO₃⁻² up to 8.0 m mol/L concentration with an EC₅₀ value of 2.4 m mol/L. After 9 d of cultivation, the presence of SeO₃²⁻ up to 1.0 m mol/L resulted in 99.9% reduction of selenite, whereas 82.0% (p<0.05), 31.7% (p<0.05) and 2.4% (p<0.05) reduction of SeO₃⁻² was observed at 2.0, 4.0 and 8.0 m mol/L SeO₃²⁻ concentrations, respectively. This study indicated that red elemental selenium was synthesized by green technology using Rhodopseudomonas palustris strain N. This strain also indicated a high tolerance to SeO₃⁻². The finding of this work will contribute to the application of selenium to human health.
منابع مشابه
Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil
BACKGROUND Microorganisms that are exposed to pollutants in the environment, such as metals/metalloids, have a remarkable ability to fight the metal stress by various mechanisms. These metal-microbe interactions have already found an important role in biotechnological applications. It is only recently that microorganisms have been explored as potential biofactories for synthesis of metal/metall...
متن کاملDraft Genome Sequence of Endophytic Herbaspirillum sp. Strain WT00C, a Tea Plant Growth-Promoting Bacterium
Endophytic Herbaspirillum sp. strain WT00C was isolated from tea plant (Camellia sinensis L.). Here, we report the 6.08 Mb draft genome sequence of this strain, providing bioinformation about its agronomic benefits and capability to reduce selenate/selenite into red elemental selenium.
متن کاملSimilarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodospirillum rubrum and Escherichia coli.
Various mechanisms have been proposed to explain the biological dissimilatory reduction of selenite (SeO3(2-)) to elemental selenium (Se(o)), although none is without controversy. Glutathione, the most abundant thiol in the eukaryotic cells, the cyanobacteria, and the alpha, beta, and gamma groups of the proteobacteria, has long been suspected to be involved in selenium metabolism. Experiments ...
متن کاملLinked redox precipitation of sulfur and selenium under anaerobic conditions by sulfate-reducing bacterial biofilms.
A biofilm-forming strain of sulfate-reducing bacteria (SRB), isolated from a naturally occurring mixed biofilm and identified by 16S rDNA analysis as a strain of Desulfomicrobium norvegicum, rapidly removed 200 micro M selenite from solution during growth on lactate and sulfate. Elemental selenium and elemental sulfur were precipitated outside SRB cells. Precipitation occurred by an abiotic rea...
متن کاملBiomimetic Synthesis of Selenium Nanospheres by Bacterial Strain JS-11 and Its Role as a Biosensor for Nanotoxicity Assessment: A Novel Se-Bioassay
Selenium nanoparticles (Se-NPs) were synthesized by green technology using the bacterial isolate Pseudomonas aeruginosa strain JS-11. The bacteria exhibited significant tolerance to selenite (SeO3(2-)) up to 100 mM concentration with an EC50 value of 140 mM. The spent medium (culture supernatant) contains the potential of reducing soluble and colorless SeO3(2-) to insoluble red elemental seleni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014